lbm_solver_3d_2phase
This solver is the multiphase model based on color gradient model Firstly, it defines some parameters
# NOTE: THIS CODE NEED taichi_glsl, so please use taichi version <=0.8.5
#import taichi, numpy, pyevtk and time package
import taichi as ti
import numpy as np
#import taichi_glsl as ts
from pyevtk.hl import gridToVTK
import time
#from taichi_glsl import scalar
#from taichi_glsl.scalar import isinf, isnan
#from taichi_glsl.vector import vecFill
#intialize taichi
ti.init(arch=ti.cpu)
#ti.init(arch=ti.gpu, dynamic_index=True,offline_cache=True)
#enable projection
enable_projection = True
# 131*131*131
nx,ny,nz = 131,131,131
#nx,ny,nz = 131,131,131
#external force in x,y,z direction
fx,fy,fz = 5.0e-5,-2e-5,0.0
#niu = 0.1
#liquid viscosity
niu_l = 0.1 #psi>0
#gas viscosity
niu_g = 0.1 #psi<0
#psi in color gradient calculation
psi_solid = 0.7
#surface tension
CapA = 0.005
#Boundary condition mode: 0=periodic, 1= fix pressure, 2=fix velocity; boundary pressure value (rho); boundary velocity value for vx,vy,vz
bc_x_left, rho_bcxl, vx_bcxl, vy_bcxl, vz_bcxl = 0, 1.0, 0.0e-5, 0.0, 0.0 #Boundary x-axis left side
bc_x_right, rho_bcxr, vx_bcxr, vy_bcxr, vz_bcxr = 0, 0.995, 0.0, 0.0, 0.0 #Boundary x-axis right side
bc_y_left, rho_bcyl, vx_bcyl, vy_bcyl, vz_bcyl = 0, 1.0, 0.0, 0.0, 0.0 #Boundary y-axis left side
bc_y_right, rho_bcyr, vx_bcyr, vy_bcyr, vz_bcyr = 0, 1.0, 0.0, 0.0, 0.0 #Boundary y-axis right side
bc_z_left, rho_bczl, vx_bczl, vy_bczl, vz_bczl = 0, 1.0, 0.0, 0.0, 0.0 #Boundary z-axis left side
bc_z_right, rho_bczr, vx_bczr, vy_bczr, vz_bczr = 0, 1.0, 0.0, 0.0, 0.0 #Boundary z-axis right side
bc_psi_x_left, psi_x_left = 1, -1.0 # boundary condition for phase-field: 0 = periodic,
bc_psi_x_right, psi_x_right = 0, 1.0 # 1 = constant value on the boundary, value = -1.0 phase1 or 1.0 = phase 2
bc_psi_y_left, psi_y_left = 0, 1.0
bc_psi_y_right, psi_y_right = 0, 1.0
bc_psi_z_left, psi_z_left = 0, 1.0
bc_psi_z_right, psi_z_right = 0, 1.0
# Non Sparse memory allocation
#density distribution function nx*ny*nz*19
f = ti.field(ti.f32,shape=(nx,ny,nz,19))
#density distribution function nx*ny*nz*19
F = ti.field(ti.f32,shape=(nx,ny,nz,19))
#density nx*ny*nz
rho = ti.field(ti.f32, shape=(nx,ny,nz))
#velocity nx*ny*nz vector
v = ti.Vector.field(3,ti.f32, shape=(nx,ny,nz))
#psi nx*ny*nz
psi = ti.field(ti.f32, shape=(nx,ny,nz))
#density r nx*ny*nz
rho_r = ti.field(ti.f32, shape=(nx,ny,nz))
#density b nx*ny*nz
rho_b = ti.field(ti.f32, shape=(nx,ny,nz))
#density r nx*ny*nz
rhor = ti.field(ti.f32, shape=(nx,ny,nz))
#density b nx*ny*nz
rhob = ti.field(ti.f32, shape=(nx,ny,nz))
#lattice speed 19 dimensional vector
e = ti.Vector.field(3,ti.i32, shape=(19))
#S_dig = ti.field(ti.f32,shape=(19))
#lattice speed 19 dimensional vector
e_f = ti.Vector.field(3,ti.f32, shape=(19))
#weight parameter 19 dimensional vector
w = ti.field(ti.f32, shape=(19))
#solid flag nx*ny*nz
solid = ti.field(ti.i32,shape=(nx,ny,nz))
#streaming vector 19 dimensional vector
LR = ti.field(ti.i32,shape=(19))
#external force 3 dimensional vector
ext_f = ti.Vector.field(3,ti.f32,shape=())
# x-left velocity 3 dimensional vector
bc_vel_x_left = ti.Vector.field(3,ti.f32, shape=())
# x-right velocity 3 dimensional vector
bc_vel_x_right = ti.Vector.field(3,ti.f32, shape=())
# y-left velocity 3 dimensional vector
bc_vel_y_left = ti.Vector.field(3,ti.f32, shape=())
# y-right velocity 3 dimensional vector
bc_vel_y_right = ti.Vector.field(3,ti.f32, shape=())
# z-left velocity 3 dimensional vector
bc_vel_z_left = ti.Vector.field(3,ti.f32, shape=())
# z-right velocity 3 dimensional vector
bc_vel_z_right = ti.Vector.field(3,ti.f32, shape=())
#transforming matrix 19*19
M = ti.field(ti.f32, shape=(19,19))
#inverse transforming matrix 19*19
inv_M = ti.field(ti.f32, shape=(19,19))
#parameters for calculating the parameter of s diagonal
#=======================================#
lg0, wl, wg = 0.0, 0.0, 0.0
l1, l2, g1, g2 = 0.0, 0.0, 0.0, 0.0
wl = 1.0/(niu_l/(1.0/3.0)+0.5)
wg = 1.0/(niu_g/(1.0/3.0)+0.5)
lg0 = 2*wl*wg/(wl+wg)
l1=2*(wl-lg0)*10
l2=-l1/0.2
g1=2*(lg0-wg)*10
g2=g1/0.2
#=======================================#
#transformation matrix
M_np = np.array([[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[-1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1],
[1,-2,-2,-2,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1],
[0,1,-1,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0],
[0,-2,2,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0],
[0,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1],
[0,0,0,-2,2,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1],
[0,0,0,0,0,1,-1,0,0,0,0,1,-1,-1,1,1,-1,-1,1],
[0,0,0,0,0,-2,2,0,0,0,0,1,-1,-1,1,1,-1,-1,1],
[0,2,2,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-2,-2,-2,-2],
[0,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,-2,-2,-2,-2],
[0,0,0,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0],
[0,0,0,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,0,0,0,0],
[0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1],
[0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0],
[0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,0,0,0,0],
[0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,1,-1,1,-1],
[0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,-1]])
#inverde of transforming matrix
inv_M_np = np.linalg.inv(M_np)
#streaming array
LR_np = np.array([0,2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15,18,17])
#M matrix from the numpy
M.from_numpy(M_np)
#inverse matrix from numpy
inv_M.from_numpy(inv_M_np)
#steaming array from numpy
LR.from_numpy(LR_np)
#external force with vector three dimensional
ext_f[None] = ti.Vector([fx,fy,fz])
#set transforming matrix, inverse matrix and streaming vector non-modified
ti.static(inv_M)
ti.static(M)
ti.static(LR)
#set x,y,z array with nx*ny*nz
x = np.linspace(0, nx, nx)
y = np.linspace(0, ny, ny)
z = np.linspace(0, nz, nz)
#set meshgrid and return three meshgrid matrix X,Y,Z with non-cartesian indexing
X, Y, Z = np.meshgrid(x, y, z, indexing='ij')
feq(k,rho_local, u)
calculate the equilibrium denisty distribution function
@ti.func
def feq(k,rho_local, u):
# eu=ts.vector.dot(e[k],u)
# uv=ts.vector.dot(u,u)
eu = e[k].dot(u)
uv = u.dot(u)
#same as single phase equilibrium density distribution function
feqout = w[k]*rho_local*(1.0+3.0*eu+4.5*eu*eu-1.5*uv)
#print(k, rho_local, w[k])
return feqout
init()
intialize some variable
@ti.kernel
def init():
for i,j,k in solid:
if (solid[i,j,k] == 0):
#if it is fluid intialize the density and velocity be one and zero
rho[i,j,k] = 1.0
v[i,j,k] = ti.Vector([0,0,0])
# set density r and density b based on psi
rho_r[i,j,k] = (psi[i,j,k]+1.0)/2.0
rho_b[i,j,k] = 1.0 - rho_r[i,j,k]
#set another density r and density b
rhor[i,j,k] = 0.0
rhob[i,j,k] = 0.0
#set density distribution equals to equilibrium density distribution function
for s in ti.static(range(19)):
f[i,j,k,s] = feq(s,1.0,v[i,j,k])
F[i,j,k,s] = feq(s,1.0,v[i,j,k])
init_geo(filename, filename2)
import the geometry data
def init_geo(filename, filename2):
#read the solid flag data and set it as an column major array
in_dat = np.loadtxt(filename)
in_dat[in_dat>0] = 1
in_dat = np.reshape(in_dat, (nx,ny,nz),order='F')
#read the phase data from file
phase_in_dat = np.loadtxt(filename2)
#set the array from the file with colum major
phase_in_dat = np.reshape(phase_in_dat, (nx,ny,nz), order='F')
return in_dat, phase_in_dat
static_init()
initialize non-modified variable
@ti.kernel
def static_init():
if ti.static(enable_projection): # No runtime overhead
#define lattice speed
e[0] = ti.Vector([0,0,0])
e[1] = ti.Vector([1,0,0]); e[2] = ti.Vector([-1,0,0]); e[3] = ti.Vector([0,1,0]); e[4] = ti.Vector([0,-1,0]);e[5] = ti.Vector([0,0,1]); e[6] = ti.Vector([0,0,-1])
e[7] = ti.Vector([1,1,0]); e[8] = ti.Vector([-1,-1,0]); e[9] = ti.Vector([1,-1,0]); e[10] = ti.Vector([-1,1,0])
e[11] = ti.Vector([1,0,1]); e[12] = ti.Vector([-1,0,-1]); e[13] = ti.Vector([1,0,-1]); e[14] = ti.Vector([-1,0,1])
e[15] = ti.Vector([0,1,1]); e[16] = ti.Vector([0,-1,-1]); e[17] = ti.Vector([0,1,-1]); e[18] = ti.Vector([0,-1,1])
#define another lattice speed
e_f[0] = ti.Vector([0,0,0])
e_f[1] = ti.Vector([1,0,0]); e_f[2] = ti.Vector([-1,0,0]); e_f[3] = ti.Vector([0,1,0]); e_f[4] = ti.Vector([0,-1,0]);e_f[5] = ti.Vector([0,0,1]); e_f[6] = ti.Vector([0,0,-1])
e_f[7] = ti.Vector([1,1,0]); e_f[8] = ti.Vector([-1,-1,0]); e_f[9] = ti.Vector([1,-1,0]); e_f[10] = ti.Vector([-1,1,0])
e_f[11] = ti.Vector([1,0,1]); e_f[12] = ti.Vector([-1,0,-1]); e_f[13] = ti.Vector([1,0,-1]); e_f[14] = ti.Vector([-1,0,1])
e_f[15] = ti.Vector([0,1,1]); e_f[16] = ti.Vector([0,-1,-1]); e_f[17] = ti.Vector([0,1,-1]); e_f[18] = ti.Vector([0,-1,1])
#define a weight parameter
w[0] = 1.0/3.0; w[1] = 1.0/18.0; w[2] = 1.0/18.0; w[3] = 1.0/18.0; w[4] = 1.0/18.0; w[5] = 1.0/18.0; w[6] = 1.0/18.0;
w[7] = 1.0/36.0; w[8] = 1.0/36.0; w[9] = 1.0/36.0; w[10] = 1.0/36.0; w[11] = 1.0/36.0; w[12] = 1.0/36.0;
w[13] = 1.0/36.0; w[14] = 1.0/36.0; w[15] = 1.0/36.0; w[16] = 1.0/36.0; w[17] = 1.0/36.0; w[18] = 1.0/36.0;
#define the boundary velocity
bc_vel_x_left = ti.Vector([vx_bcxl, vy_bcxl, vz_bcxl])
bc_vel_x_right = ti.Vector([vx_bcxr, vy_bcxr, vz_bcxr])
bc_vel_y_left = ti.Vector([vx_bcyl, vy_bcyl, vz_bcyl])
bc_vel_y_right = ti.Vector([vx_bcyr, vy_bcyr, vz_bcyr])
bc_vel_z_left = ti.Vector([vx_bczl, vy_bczl, vz_bczl])
bc_vel_z_right = ti.Vector([vx_bczr, vy_bczr, vz_bczr])
multiply_M()
calculate the density distribution function in momentum space
@ti.func
def multiply_M(i,j,k):
out = ti.Vector([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
for index in ti.static(range(19)):
for s in ti.static(range(19)):
#calculate here
out[index] += M[index,s]*F[i,j,k,s]
#print(i,j,k, index, s, out[index], M[index,s], F[i,j,k,s])
return out
GuoF(i,j,k,s,u)
calculate Guo’s force term
@ti.func
def GuoF(i,j,k,s,u):
out=0.0
for l in ti.static(range(19)):
out += w[l]*((e_f[l]-u).dot(ext_f[None])+(e_f[l].dot(u)*(e_f[l].dot(ext_f[None]))))*M[s,l]
return out
meq_vec(rho_local,u)
defines the equilibrium momentum
@ti.func
def meq_vec(rho_local,u):
out = ti.Vector([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
out[0] = rho_local; out[3] = u[0]; out[5] = u[1]; out[7] = u[2];
out[1] = u.dot(u); out[9] = 2*u.x*u.x-u.y*u.y-u.z*u.z; out[11] = u.y*u.y-u.z*u.z
out[13] = u.x*u.y; out[14] = u.y*u.z; out[15] = u.x*u.z
return out
Compute_C()
calculate the color gradient
@ti.func
def Compute_C(i):
C = ti.Vector([0.0,0.0,0.0])
ind_S = 0
for s in ti.static(range(19)):
ip = periodic_index_for_psi(i+e[s])
if (solid[ip] == 0):
#if it's fluid calculate the color gradient based on psi
C += 3.0*w[s]*e_f[s]*psi[ip]
else:
#if it is solid and abs(density r-density b) is less than 0.9
ind_S = 1
#calculate the color gradient based on psi_solid and set ind_s=1
C += 3.0*w[s]*e_f[s]*psi_solid
if (abs(rho_r[i]-rho_b[i]) > 0.9) and (ind_S == 1):
#if abs(density r-density b) is very large and it's solid set color gradient to be zero
C = ti.Vector([0.0,0.0,0.0])
return C
Compute_S_local
calculate parameter of s diagonal
@ti.func
def Compute_S_local(id):
sv=0.0; sother=0.0
if (psi[id]>0):
if (psi[id]>0.1):
#if psi>0.1
#sv=1.0/(niu_l/(1.0/3.0)+0.5)
sv=wl
else:
#if 0<psi<0.1 calculate sv
sv=lg0+l1*psi[id]+l2*psi[id]*psi[id]
else:
#if psi <-0.1
if (psi[id]<-0.1):
#calculate sv
sv=wg
else:
#if psi >-0.1
sv=lg0+g1*psi[id]+g2*psi[id]*psi[id]
#calculate s other
sother = 8.0*(2.0-sv)/(8.0-sv)
#set s diagonal to be zero and set certain element to be relatie local parameter
S = ti.Vector([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
S[1]=sv;S[2]=sv;S[4]=sother;S[6]=sother;S[8]=sother;S[9]=sv;
S[10]=sv;S[11]=sv;S[12]=sv;S[13]=sv;S[14]=sv;S[15]=sv;S[16]=sother;
S[17]=sother;S[18]=sother;
return S;
collision()
define the collision and recoloring process
@ti.kernel
def colission():
for i,j,k in rho:
#if it is inner fluid, calculate color gradient divided by norm of color gradient
if (i<nx and j<ny and k<nz and solid[i,j,k] == 0):
uu = v[i,j,k].norm_sqr()
C = Compute_C(ti.Vector([i,j,k]))
cc = C.norm()
normal = ti.Vector([0.0,0.0,0.0])
if cc>0 :
normal = C/cc
#calculate the M
m_temp = multiply_M(i,j,k)
meq = meq_vec(rho[i,j,k],v[i,j,k])
#calculate surface tension term
meq[1] += CapA*cc
meq[9] += 0.5*CapA*cc*(2*normal.x*normal.x-normal.y*normal.y-normal.z*normal.z)
meq[11] += 0.5*CapA*cc*(normal.y*normal.y-normal.z*normal.z)
meq[13] += 0.5*CapA*cc*(normal.x*normal.y)
meq[14] += 0.5*CapA*cc*(normal.y*normal.z)
meq[15] += 0.5*CapA*cc*(normal.x*normal.z)
#calculate s local
S_local = Compute_S_local(ti.Vector([i,j,k]))
#calculate s*(m-meq)
for s in ti.static(range(19)):
m_temp[s] -= S_local[s]*(m_temp[s]-meq[s])
m_temp[s] += (1-0.5*S_local[s])*GuoF(i,j,k,s,v[i,j,k])
#calculte convection of density filed
g_r = ti.Vector([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
g_b = ti.Vector([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
for s in ti.static(range(19)):
f[i,j,k,s] = 0
for l in ti.static(range(19)):
# 1.single phase collision
f[i,j,k,s] += inv_M[s,l]*m_temp[l]
g_r[s] = feq(s,rho_r[i,j,k],v[i,j,k])
g_b[s] = feq(s,rho_b[i,j,k],v[i,j,k])
if (cc>0):
for kk in ti.static([1,3,5,7,9,11,13,15,17]):
# ef=ts.vector.dot(e[kk],C)
ef=e[kk].dot(C)
cospsi= g_r[kk] if (g_r[kk]<g_r[kk+1]) else g_r[kk+1]
cospsi= cospsi if (cospsi<g_b[kk]) else g_b[kk]
cospsi=cospsi if (cospsi<g_b[kk+1]) else g_b[kk+1]
cospsi*=ef/cc
#2.surface tension perturbation
g_r[kk]+=cospsi
g_r[kk+1]-=cospsi
g_b[kk]-=cospsi
g_b[kk+1]+=cospsi
# recoloring
for s in ti.static(range(19)):
ip = periodic_index(ti.Vector([i,j,k])+e[s])
if (solid[ip]==0):
rhor[ip] += g_r[s]
rhob[ip] += g_b[s]
else:
rhor[i,j,k] += g_r[s]
rhob[i,j,k] += g_b[s]
periodic_index()
defines the index of boundary if using periodic boundary condition
@ti.func
def periodic_index(i):
iout = i
if i[0]<0: iout[0] = nx-1
if i[0]>nx-1: iout[0] = 0
if i[1]<0: iout[1] = ny-1
if i[1]>ny-1: iout[1] = 0
if i[2]<0: iout[2] = nz-1
if i[2]>nz-1: iout[2] = 0
return iout
periodic_index_for_psi(i)
defines the index of boundary for psi if using periodic boundary condition
@ti.func
def periodic_index_for_psi(i):
iout = i
if i[0]<0:
#if periodic boundary condition set index based on periodic boundary condition
if bc_psi_x_left == 0:
iout[0] = nx-1
else:
#otherwise set neighbouring index,
#similar for other sides
iout[0] = 0
if i[0]>nx-1:
if bc_psi_x_right==0:
iout[0] = 0
else:
iout[0] = nx-1
if i[1]<0:
if bc_psi_y_left == 0:
iout[1] = ny-1
else:
iout[1] = 0
if i[1]>ny-1:
if bc_psi_y_right==0:
iout[1] = 0
else:
iout[1] = ny-1
if i[2]<0:
if bc_psi_z_left==0:
iout[2] = nz-1
else:
iout[2] = 0
if i[2]>nz-1:
if bc_psi_z_right==0:
iout[2] = 0
else:
iout[2] = nz-1
return iout
streaming1()
defines steaming process of denisty distribution function
@ti.kernel
def streaming1():
for i,j,k in rho:
#if (solid[i,j,k] == 0):
if (i<nx and j<ny and k<nz and solid[i,j,k] == 0):
ci = ti.Vector([i,j,k])
for s in ti.static(range(19)):
ip = periodic_index(ci+e[s])
if (solid[ip]==0):
#if it is fluid,streaming along certain direction
F[ip,s] = f[ci,s]
else:
#if it is on the solid, bounce back to the opposite
F[ci,LR[s]] = f[ci,s]
#print(i, ip, "@@@")
Boundary_condition_psi()
defines boundary condition for psi
@ti.kernel
def Boundary_condition_psi():
if bc_psi_x_left == 1:
for j,k in ti.ndrange((0,ny),(0,nz)):
if (solid[0,j,k]==0):
#if it is fluid the value of psi equals to the psi_x_left
psi[0,j,k] = psi_x_left
#calculate density according to psi
#similar for other sides
rho_r[0,j,k] = (psi_x_left + 1.0)/2.0
rho_b[0,j,k] = 1.0 - rho_r[0,j,k]
if bc_psi_x_right == 1:
for j,k in ti.ndrange((0,ny),(0,nz)):
if (solid[nx-1,j,k]==0):
psi[nx-1,j,k] = psi_x_right
rho_r[nx-1,j,k] = (psi_x_right + 1.0)/2.0
rho_b[nx-1,j,k] = 1.0 - rho_r[nx-1,j,k]
if bc_psi_y_left == 1:
for i,k in ti.ndrange((0,nx),(0,nz)):
if (solid[i,0,k]==0):
psi[i,0,k] = psi_y_left
rho_r[i,0,k] = (psi_y_left + 1.0)/2.0
rho_b[i,0,k] = 1.0 - rho_r[i,0,k]
if bc_psi_y_right == 1:
for i,k in ti.ndrange((0,nx),(0,nz)):
if (solid[i,ny-1,k]==0):
psi[i,ny-1,k] = psi_y_right
rho_r[i,ny-1,k] = (psi_y_right + 1.0)/2.0
rho_b[i,ny-1,k] = 1.0 - rho_r[i,ny-1,k]
if bc_psi_z_left == 1:
for i,j in ti.ndrange((0,nx),(0,ny)):
if (solid[i,j,0]==0):
psi[i,j,0] = psi_z_left
rho_r[i,j,0] = (psi_z_left + 1.0)/2.0
rho_b[i,j,0] = 1.0 - rho_r[i,j,0]
if bc_psi_z_right == 1:
for i,j in ti.ndrange((0,nx),(0,ny)):
if (solid[i,j,nz-1]==0):
psi[i,j,nz-1] = psi_z_right
rho_r[i,j,nz-1] = (psi_z_right + 1.0)/2.0
rho_b[i,j,nz-1] = 1.0 - rho_r[i,j,nz-1]
Boundary_condition
defines boundary condition and the same as single_phase solver
@ti.kernel
def Boundary_condition():
if ti.static(bc_x_left==1):
for j,k in ti.ndrange((0,ny),(0,nz)):
if (solid[0,j,k]==0):
for s in ti.static(range(19)):
if (solid[1,j,k]>0):
F[0,j,k,s]=feq(s, rho_bcxl, v[1,j,k])
else:
F[0,j,k,s]=feq(s, rho_bcxl, v[0,j,k])
if ti.static(bc_x_left==2):
for j,k in ti.ndrange((0,ny),(0,nz)):
if (solid[0,j,k]==0):
for s in ti.static(range(19)):
F[0,j,k,s]=feq(LR[s], 1.0, bc_vel_x_left[None])-F[0,j,k,LR[s]]+feq(s,1.0,bc_vel_x_left[None])
if ti.static(bc_x_right==1):
for j,k in ti.ndrange((0,ny),(0,nz)):
if (solid[nx-1,j,k]==0):
for s in ti.static(range(19)):
if (solid[nx-2,j,k]>0):
F[nx-1,j,k,s]=feq(s, rho_bcxr, v[nx-2,j,k])
else:
F[nx-1,j,k,s]=feq(s, rho_bcxr, v[nx-1,j,k])
if ti.static(bc_x_right==2):
for j,k in ti.ndrange((0,ny),(0,nz)):
if (solid[nx-1,j,k]==0):
for s in ti.static(range(19)):
F[nx-1,j,k,s]=feq(LR[s], 1.0, bc_vel_x_right[None])-F[nx-1,j,k,LR[s]]+feq(s,1.0,bc_vel_x_right[None])
# Direction Y
if ti.static(bc_y_left==1):
for i,k in ti.ndrange((0,nx),(0,nz)):
if (solid[i,0,k]==0):
for s in ti.static(range(19)):
if (solid[i,1,k]>0):
F[i,0,k,s]=feq(s, rho_bcyl, v[i,1,k])
else:
F[i,0,k,s]=feq(s, rho_bcyl, v[i,0,k])
if ti.static(bc_y_left==2):
for i,k in ti.ndrange((0,nx),(0,nz)):
if (solid[i,0,k]==0):
for s in ti.static(range(19)):
F[i,0,k,s]=feq(LR[s], 1.0, bc_vel_y_left[None])-F[i,0,k,LR[s]]+feq(s,1.0,bc_vel_y_left[None])
if ti.static(bc_y_right==1):
for i,k in ti.ndrange((0,nx),(0,nz)):
if (solid[i,ny-1,k]==0):
for s in ti.static(range(19)):
if (solid[i,ny-2,k]>0):
F[i,ny-1,k,s]=feq(s, rho_bcyr, v[i,ny-2,k])
else:
F[i,ny-1,k,s]=feq(s, rho_bcyr, v[i,ny-1,k])
if ti.static(bc_y_right==2):
for i,k in ti.ndrange((0,nx),(0,nz)):
if (solid[i,ny-1,k]==0):
for s in ti.static(range(19)):
F[i,ny-1,k,s]=feq(LR[s], 1.0, bc_vel_y_right[None])-F[i,ny-1,k,LR[s]]+feq(s,1.0,bc_vel_y_right[None])
# Z direction
if ti.static(bc_z_left==1):
for i,j in ti.ndrange((0,nx),(0,ny)):
if (solid[i,j,0]==0):
for s in ti.static(range(19)):
if (solid[i,j,1]>0):
F[i,j,0,s]=feq(s, rho_bczl, v[i,j,1])
else:
F[i,j,0,s]=feq(s, rho_bczl, v[i,j,0])
if ti.static(bc_z_left==2):
for i,j in ti.ndrange((0,nx),(0,ny)):
if (solid[i,j,0]==0):
for s in ti.static(range(19)):
F[i,j,0,s]=feq(LR[s], 1.0, bc_vel_z_left[None])-F[i,j,0,LR[s]]+feq(s,1.0,bc_vel_z_left[None])
if ti.static(bc_z_right==1):
for i,j in ti.ndrange((0,nx),(0,ny)):
if (solid[i,j,nz-1]==0):
for s in ti.static(range(19)):
if (solid[i,j,nz-2]>0):
F[i,j,nz-1,s]=feq(s, rho_bczr, v[i,j,nz-2])
else:
F[i,j,nz-1,s]=feq(s, rho_bczr, v[i,j,nz-1])
if ti.static(bc_z_right==2):
for i,j in ti.ndrange((0,nx),(0,ny)):
if (solid[i,j,nz-1]==0):
for s in ti.static(range(19)):
F[i,j,nz-1,s]=feq(LR[s], 1.0, bc_vel_z_right[None])-F[i,j,nz-1,LR[s]]+feq(s,1.0,bc_vel_z_right[None])
Boundary_condition_psi()
calculate macroscopic variable
@ti.kernel
def streaming3():
for i,j,k, in rho:
#if (solid[i,j,k] == 0):
if (i<nx and j<ny and k<nz and solid[i,j,k] == 0):
rho[i,j,k] = 0
v[i,j,k] = ti.Vector([0,0,0])
#define denisty r and density b
rho_r[i,j,k] = rhor[i,j,k]
rho_b[i,j,k] = rhob[i,j,k]
rhor[i,j,k] = 0.0; rhob[i,j,k] = 0.0
for s in ti.static(range(19)):
f[i,j,k,s] = F[i,j,k,s]
rho[i,j,k] += f[i,j,k,s]
v[i,j,k] += e_f[s]*f[i,j,k,s]
#calculate velocity and psi
v[i,j,k] /= rho[i,j,k]
v[i,j,k] += (ext_f[None]/2)/rho[i,j,k]
psi[i,j,k] = rho_r[i,j,k]-rho_b[i,j,k]/(rho_r[i,j,k] + rho_b[i,j,k])
The code snippts below define time, read file do the simulation and export results It is almost the same as the single-phase solver except two input file and export phase variable
time_init = time.time()
time_now = time.time()
time_pre = time.time()
dt_count = 0
solid_np, phase_np = init_geo('./img_ftb131.txt','./phase_ftb131.dat')
#solid_np = init_geo('./img_ftb131.txt')
solid.from_numpy(solid_np)
psi.from_numpy(phase_np)
static_init()
init()
#print(wl,wg, lg0, l1, l2,'~@@@@@~@~@~@~@')
for iter in range(80000+1):
colission()
streaming1()
Boundary_condition()
#streaming2()
streaming3()
Boundary_condition_psi()
if (iter%500==0):
time_pre = time_now
time_now = time.time()
diff_time = int(time_now-time_pre)
elap_time = int(time_now-time_init)
m_diff, s_diff = divmod(diff_time, 60)
h_diff, m_diff = divmod(m_diff, 60)
m_elap, s_elap = divmod(elap_time, 60)
h_elap, m_elap = divmod(m_elap, 60)
print('----------Time between two outputs is %dh %dm %ds; elapsed time is %dh %dm %ds----------------------' %(h_diff, m_diff, s_diff,h_elap,m_elap,s_elap))
print('The %dth iteration, Max Force = %f, force_scale = %f\n\n ' %(iter, 10.0, 10.0))
if (iter%10000==0):
gridToVTK(
"./structured"+str(iter),
x,
y,
z,
#cellData={"pressure": pressure},
pointData={ "Solid": np.ascontiguousarray(solid.to_numpy()),
"rho": np.ascontiguousarray(rho.to_numpy()[0:nx,0:ny,0:nz]),
"phase": np.ascontiguousarray(psi.to_numpy()[0:nx,0:ny,0:nz]),
"velocity": (np.ascontiguousarray(v.to_numpy()[0:nx,0:ny,0:nz,0]), np.ascontiguousarray(v.to_numpy()[0:nx,0:ny,0:nz,1]),np.ascontiguousarray(v.to_numpy()[0:nx,0:ny,0:nz,2]))
}
)
#ti.print_kernel_profile_info()
#ti.print_profile_info()